DOLOMITE

DOLOMITE

Chemistry: CaMg(CO3)2, Calcium Magnesium Carbonate
Class: Carbonates
Group: Dolomite
Uses: in some cements, as a source of magnesium and as mineral specimens.

Dolomite, which is named for the French mineralogist Deodat de Dolomieu, is a common sedimentary rock-forming mineral that can be found in massive beds several hundred feet thick. They are found all over the world and are quite common in sedimentary rock sequences. These rocks are called appropriately enough dolomite or dolomitic limestone. Disputes have arisen as to how these dolomite beds formed and the debate has been called the “Dolomite Problem”. Dolomite at present time, does not form on the surface of the earth; yet massive layers of dolomite can be found in ancient rocks. That is quite a problem for sedimentologists who see sandstones, shales and limestones formed today almost before their eyes. Why no dolomite? Well there are no good simple answers, but it appears that dolomite rock is one of the few sedimentary rocks that undergoes a significant mineralogical change after it is deposited. They are originally deposited as calcite/aragonite rich limestones, but during a process call diagenesis the calcite and/or aragonite is altered to dolomite. The process is not metamorphism, but something just short of that. Magnesium rich ground waters that have a significant amount of salinity are probably crucial and warm, tropical near ocean environments are probably the best source of dolomite formation.

Dolomite in addition to the sedimentary beds is also found in metamorphic marbles, hydrothermal veins and replacement deposits. Except in its pink, curved crystal habit dolomite is hard to distinguish from its second cousin, calcite. But calcite is far more common and effervesces easily when acid is applied to it. But this is not the case with dolomite which only weakly bubbles with acid and only when the acid is warm or the dolomite is powdered. Dolomite is also slightly harder, denser and never forms scalenohedrons (calcite’s most typical habit).

Dolomite differs from calcite, CaCO3, in the addition of magnesium ions to make the formula, CaMg(CO3)2. The magnesium ions are not the same size as calcium and the two ions seem incompatible in the same layer. In calcite the structure is composed of alternating layers of carbonate ions, CO3, and calcium ions. In dolomite, the magnesiums occupy one layer by themselves followed by a carbonate layer which is followed by an exclusively calcite layer and so forth. Why the alternating layers? It is probably the significant size difference between calcium and magnesium and it is more stable to group the differing sized ions into same sized layers. Other carbonate minerals that have this alternating layered structure belong to the Dolomite Group. Dolomite is the principle member of the Dolomite Group of minerals which includes ankerite, the only other somewhat common member.

Dolomite forms rhombohedrons as its typical crystal habit. But for some reason, possibly twinning, some crystals curve into saddle-shaped crystals. These crystals represent a unique crystal habit that is well known as classical dolomite. Not all crystals of dolomite are curved and some impressive specimens show well formed, sharp rhombohedrons. The luster of dolomite is unique as well and is probably the best illustration of a pearly luster. The pearl-like effect is best seen on the curved crystals as a sheen of light can sweep across the curved surface. Dolomite can be several different colors, but colorless and white are very common. However it is dolomite’s pink color that sets another unique characteristic for dolomite. Crystals of dolomite are well known for their typical beautiful pink color, pearly luster and unusual crystal habit and it is these clusters that make very attractive specimens.

PHYSICAL CHARACTERISTICS:

  •         Color is often pink or pinkish and can be colorless, white, yellow, gray or even brown or black when iron is present in the crystal.
  • Luster is pearly to vitreous to dull.
  • Transparency crystals are transparent to translucent.
  • Crystal System is trigonal; bar 3
  • Crystal Habits include saddle shaped rhombohedral twins and simple rhombs some with slightly curved faces, also prismatic, massive, granular and rock forming. Never found in scalenohedrons.
  • Cleavage is perfect in three directions forming rhombohedrons.
  • Fracture is conchoidal.
  • Hardness is 3.5-4
  • Specific Gravity is 2.86 (average)
  • Streak is white.
  • Other Characteristics: Unlike calcite, effervesces weakly with warm acid or when first powdered with cold HCl.
  • Notable Occurrences include many localities throughout the world, but well known from sites in Midwestern quarries of the USA; Ontario, Canada; Switzerland; Pamplona, Spain and in Mexico.
  • Best Field Indicators are typical pink color, crystal habit, hardness, slow reaction to acid, density and luster.

 

 

Dolomite is the name of a sedimentary carbonate rock and a mineral, both composed of calcium magnesium carbonate found in crystals.

Dolomite rock (also dolostone) is composed predominantly of the mineral dolomite. Limestone that is partially replaced by dolomite is referred to as dolomitic limestone, or in old U.S. geologic literature as magnesian limestone. Dolomite was first described in 1791 as the rock by the French naturalist and geologist, Déodat Gratet de Dolomieu (1750–1801) for exposures in the Dolomite Alps of northern Italy.

Properties

The mineral dolomite crystallizes in the trigonal-rhombohedral system. It forms white, gray to pink, commonly curved crystals, although it is usually massive. It has physical properties similar to those of the mineral calcite, but does not rapidly dissolve or effervesce (fizz) in dilute hydrochloric acid unless it is scratched or in powdered form. The Mohs hardness is 3.5 to 4 and the specific gravity is 2.85. Refractive index values are nω = 1.679 – 1.681 and nε = 1.500. Crystal twinning is common. A solid solution series exists between dolomite and iron rich ankerite. Small amounts of iron in the structure give the crystals a yellow to brown tint. Manganese substitutes in the structure also up to about three percent MnO. A high manganese content gives the crystals a rosy pink color noted in the image above. A series with the manganese rich kutnohorite may exist. Lead and zinc also substitute in the structure for magnesium

Formation.

Vast deposits are present in the geological record, but the mineral is relatively rare in modern environments. Laboratory synthesis of stoichiometric dolomite has been carried out only at temperatures of greater than 100 degrees Celsius (conditions typical of burial in sedimentary basins), even though much dolomite in the rock record appears to have formed in low-temperature conditions. The high temperature is likely to speed up the movement of calcium and magnesium ions so that they can find their places in the ordered structure within a reasonable amount of time. This suggests that the lack of dolomite that is being formed today is likely due to kinematic factors.

Modern dolomite does occur as a precipitating mineral in specialized environments on the surface of the earth today. In the 1950s and 60s, dolomite was found to be forming in highly saline lakes in the Coorong region of South Australia. Dolomite crystals also occur in deep-sea sediments, where organic matter content is high. This dolomite is termed “organogenic” dolomite.

Recent research has found modern dolomite formation under anaerobic conditions in supersaturated saline lagoons along the Rio de Janeiro coast of Brazil, namely, Lagoa Vermelha and Brejo do Espinho. One interesting reported case was the formation of dolomite in the kidneys of a Dalmatian dog. This was believed to be due to chemical processes triggered by bacteria. Dolomite has been speculated to develop under these conditions with the help of sulfate-reducing bacteria.

The actual role of bacteria in the low-temperature formation of dolomite remains to be demonstrated. The specific mechanism of dolomitization, involving sulfate-reducing bacteria, has not yet been demonstrated.

Dolomite appears to form in many different types of environment and can have varying structural, textural and chemical characteristics. Some researchers have stated “there are dolomites and dolomites”, meaning that there may not be one single mechanism by which dolomite can form. Much modern dolomite differs significantly from the bulk of the dolomite found in the rock record, leading researchers to speculate that environments where dolomite formed in the geologic past differ significantly from those where it forms today.

Reproducible laboratory syntheses of dolomite (and magnesite) leads first to the initial precipitation of a metastable “precursor” (such as magnesium calcite), to be changed gradually into more and more of the stable phase (such as dolomite or magnesite) during periodical intervals of dissolution and reprecipitation. The general principle governing the course of this irreversible geochemical reaction has been coined Ostwald’s step rule.

For a very long time scientists had difficulties synthesizing dolomite. However, in a 1999 study, through a process of dissolution alternating with intervals of precipitation, measurable levels of dolomite were synthesized at low temperatures and pressures.

Coral atolls

Dolomitization of calcite also occurs at certain depths of coral atolls where water is undersaturated in calcium carbonate but saturated in dolomite. Convection created by tides and sea currents enhance this change. Hydrothermal currents created by volcanoes under the atoll may also play an important role.

Address 1: H.K Microns 23, Punjabi Bagh, Indore | Address 2: H.K Microns, Balicha, Udaipur
Copyright © 2020 HK Microns. All rights reserved- Designed By Casa Informatix